BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo.
نویسنده
چکیده
The proper development of axon terminal arbors and their recognition of target neurons depend, in part, on neuronal activity. Neurotrophins are attractive candidate signals to participate in activity-dependent development and refinement of neuronal connectivity. In the visual system, brain-derived neurotrophic factor (BDNF) has been shown to modulate the elaboration and refinement of axonal arbors and to participate in the establishment of topographically ordered visual maps. By examining in vivo with time-lapse microscopy the effects of activity blockade and BDNF on optic axon arborization, I show that the dynamic mechanisms by which neurotrophins and neuronal activity regulate axon arborization differ. Acute retinal activity blockade by intraocular injection of tetrodotoxin (TTX) rapidly and significantly increased branch addition and elimination, thus interfering with axon branch stabilization. The effects of activity blockade on branch dynamics resulted in increased arbor complexity in the long term and were prevented by altering endogenous BDNF levels at the target. BDNF promoted axon arborization by increasing branch addition and lengthening, without affecting branch elimination. Activity blockade, however, did not prevent the growth-promoting effects of BDNF, indicating that BDNF can affect axon arborization even in the absence of activity. Together this evidence indicates that BDNF acts as a modulator, but not as a direct mediator, of activity during the morphological development of neurons. Consequently, neuronal activity and BDNF use distinct but interactive mechanisms to control the development of neuronal connectivity; BDNF modulates axon arborization by promoting growth, neuronal activity participates in axon branch stabilization, and together these two signals converge to shape axon form.
منابع مشابه
BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
Brain-derived neurotrophic factor (BDNF) modulates synaptic connectivity by increasing synapse number and by promoting activity-dependent axon arbor growth. Patterned neuronal activity is also thought to influence the morphological maturation of axonal arbors by directly influencing the stability of developing synapses. Here, we used in vivo time-lapse imaging to examine the relationship betwee...
متن کاملBrain-derived neurotrophic factor and TrkB modulate visual experience-dependent refinement of neuronal pathways in retina.
Sensory experience refines neuronal structure and functionality. The visual system has proved to be a productive model system to study this plasticity. In the neonatal retina, the dendritic arbors of a large proportion of ganglion cells are diffuse in the inner plexiform layer. With maturation, many of these arbors become monolaminated. Visual deprivation suppresses this remodeling. Little is k...
متن کاملCell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
BDNF contributes to the activity-dependent establishment and refinement of visual connectivity. In Xenopus, BDNF applications in the optic tectum influence retinal ganglion cell (RGC) axon branching and promote synapse formation and stabilization. The expression patterns of BDNF and TrkB suggest that BDNF specifically regulates the maturation of RGC axons at the target. It is possible, however,...
متن کاملLocal and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo.
The dendritic and axonal arbors of developing retinal ganglion cells (RGCs) are exposed to two sources of BDNF: RGC dendrites are exposed to BDNF locally within the retina, and RGC axons are exposed to BDNF at the target, the optic tectum. Our previous studies demonstrated that increasing tectal BDNF levels promotes RGC axon terminal arborization, whereas increasing retinal BDNF levels inhibits...
متن کاملBDNF increases synapse density in dendrites of developing tectal neurons in vivo.
Neuronal connections are established through a series of developmental events that involve close communication between pre- and postsynaptic neurons. In the visual system, BDNF modulates the development of neuronal connectivity by influencing presynaptic retinal ganglion cell (RGC) axons. Increasing BDNF levels in the optic tectum of Xenopus tadpoles significantly increases both axon arborizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 22 شماره
صفحات -
تاریخ انتشار 1999